3.205 \(\int \frac{\sqrt{c+a^2 c x^2} \tan ^{-1}(a x)}{x^2} \, dx\)

Optimal. Leaf size=242 \[ \frac{i a c \sqrt{a^2 x^2+1} \text{PolyLog}\left (2,-\frac{i \sqrt{1+i a x}}{\sqrt{1-i a x}}\right )}{\sqrt{a^2 c x^2+c}}-\frac{i a c \sqrt{a^2 x^2+1} \text{PolyLog}\left (2,\frac{i \sqrt{1+i a x}}{\sqrt{1-i a x}}\right )}{\sqrt{a^2 c x^2+c}}-\frac{2 i a c \sqrt{a^2 x^2+1} \tan ^{-1}\left (\frac{\sqrt{1+i a x}}{\sqrt{1-i a x}}\right ) \tan ^{-1}(a x)}{\sqrt{a^2 c x^2+c}}-\frac{\sqrt{a^2 c x^2+c} \tan ^{-1}(a x)}{x}-a \sqrt{c} \tanh ^{-1}\left (\frac{\sqrt{a^2 c x^2+c}}{\sqrt{c}}\right ) \]

[Out]

-((Sqrt[c + a^2*c*x^2]*ArcTan[a*x])/x) - ((2*I)*a*c*Sqrt[1 + a^2*x^2]*ArcTan[a*x]*ArcTan[Sqrt[1 + I*a*x]/Sqrt[
1 - I*a*x]])/Sqrt[c + a^2*c*x^2] - a*Sqrt[c]*ArcTanh[Sqrt[c + a^2*c*x^2]/Sqrt[c]] + (I*a*c*Sqrt[1 + a^2*x^2]*P
olyLog[2, ((-I)*Sqrt[1 + I*a*x])/Sqrt[1 - I*a*x]])/Sqrt[c + a^2*c*x^2] - (I*a*c*Sqrt[1 + a^2*x^2]*PolyLog[2, (
I*Sqrt[1 + I*a*x])/Sqrt[1 - I*a*x]])/Sqrt[c + a^2*c*x^2]

________________________________________________________________________________________

Rubi [A]  time = 0.226926, antiderivative size = 242, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.318, Rules used = {4950, 4944, 266, 63, 208, 4890, 4886} \[ \frac{i a c \sqrt{a^2 x^2+1} \text{PolyLog}\left (2,-\frac{i \sqrt{1+i a x}}{\sqrt{1-i a x}}\right )}{\sqrt{a^2 c x^2+c}}-\frac{i a c \sqrt{a^2 x^2+1} \text{PolyLog}\left (2,\frac{i \sqrt{1+i a x}}{\sqrt{1-i a x}}\right )}{\sqrt{a^2 c x^2+c}}-\frac{2 i a c \sqrt{a^2 x^2+1} \tan ^{-1}\left (\frac{\sqrt{1+i a x}}{\sqrt{1-i a x}}\right ) \tan ^{-1}(a x)}{\sqrt{a^2 c x^2+c}}-\frac{\sqrt{a^2 c x^2+c} \tan ^{-1}(a x)}{x}-a \sqrt{c} \tanh ^{-1}\left (\frac{\sqrt{a^2 c x^2+c}}{\sqrt{c}}\right ) \]

Antiderivative was successfully verified.

[In]

Int[(Sqrt[c + a^2*c*x^2]*ArcTan[a*x])/x^2,x]

[Out]

-((Sqrt[c + a^2*c*x^2]*ArcTan[a*x])/x) - ((2*I)*a*c*Sqrt[1 + a^2*x^2]*ArcTan[a*x]*ArcTan[Sqrt[1 + I*a*x]/Sqrt[
1 - I*a*x]])/Sqrt[c + a^2*c*x^2] - a*Sqrt[c]*ArcTanh[Sqrt[c + a^2*c*x^2]/Sqrt[c]] + (I*a*c*Sqrt[1 + a^2*x^2]*P
olyLog[2, ((-I)*Sqrt[1 + I*a*x])/Sqrt[1 - I*a*x]])/Sqrt[c + a^2*c*x^2] - (I*a*c*Sqrt[1 + a^2*x^2]*PolyLog[2, (
I*Sqrt[1 + I*a*x])/Sqrt[1 - I*a*x]])/Sqrt[c + a^2*c*x^2]

Rule 4950

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> Dist[
d, Int[(f*x)^m*(d + e*x^2)^(q - 1)*(a + b*ArcTan[c*x])^p, x], x] + Dist[(c^2*d)/f^2, Int[(f*x)^(m + 2)*(d + e*
x^2)^(q - 1)*(a + b*ArcTan[c*x])^p, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[e, c^2*d] && GtQ[q, 0] &&
 IGtQ[p, 0] && (RationalQ[m] || (EqQ[p, 1] && IntegerQ[q]))

Rule 4944

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> Simp
[((f*x)^(m + 1)*(d + e*x^2)^(q + 1)*(a + b*ArcTan[c*x])^p)/(d*f*(m + 1)), x] - Dist[(b*c*p)/(f*(m + 1)), Int[(
f*x)^(m + 1)*(d + e*x^2)^q*(a + b*ArcTan[c*x])^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, f, m, q}, x] && EqQ[e,
 c^2*d] && EqQ[m + 2*q + 3, 0] && GtQ[p, 0] && NeQ[m, -1]

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 4890

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[1 + c^2*x^2]/Sq
rt[d + e*x^2], Int[(a + b*ArcTan[c*x])^p/Sqrt[1 + c^2*x^2], x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*
d] && IGtQ[p, 0] &&  !GtQ[d, 0]

Rule 4886

Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(-2*I*(a + b*ArcTan[c*x])*
ArcTan[Sqrt[1 + I*c*x]/Sqrt[1 - I*c*x]])/(c*Sqrt[d]), x] + (Simp[(I*b*PolyLog[2, -((I*Sqrt[1 + I*c*x])/Sqrt[1
- I*c*x])])/(c*Sqrt[d]), x] - Simp[(I*b*PolyLog[2, (I*Sqrt[1 + I*c*x])/Sqrt[1 - I*c*x]])/(c*Sqrt[d]), x]) /; F
reeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && GtQ[d, 0]

Rubi steps

\begin{align*} \int \frac{\sqrt{c+a^2 c x^2} \tan ^{-1}(a x)}{x^2} \, dx &=c \int \frac{\tan ^{-1}(a x)}{x^2 \sqrt{c+a^2 c x^2}} \, dx+\left (a^2 c\right ) \int \frac{\tan ^{-1}(a x)}{\sqrt{c+a^2 c x^2}} \, dx\\ &=-\frac{\sqrt{c+a^2 c x^2} \tan ^{-1}(a x)}{x}+(a c) \int \frac{1}{x \sqrt{c+a^2 c x^2}} \, dx+\frac{\left (a^2 c \sqrt{1+a^2 x^2}\right ) \int \frac{\tan ^{-1}(a x)}{\sqrt{1+a^2 x^2}} \, dx}{\sqrt{c+a^2 c x^2}}\\ &=-\frac{\sqrt{c+a^2 c x^2} \tan ^{-1}(a x)}{x}-\frac{2 i a c \sqrt{1+a^2 x^2} \tan ^{-1}(a x) \tan ^{-1}\left (\frac{\sqrt{1+i a x}}{\sqrt{1-i a x}}\right )}{\sqrt{c+a^2 c x^2}}+\frac{i a c \sqrt{1+a^2 x^2} \text{Li}_2\left (-\frac{i \sqrt{1+i a x}}{\sqrt{1-i a x}}\right )}{\sqrt{c+a^2 c x^2}}-\frac{i a c \sqrt{1+a^2 x^2} \text{Li}_2\left (\frac{i \sqrt{1+i a x}}{\sqrt{1-i a x}}\right )}{\sqrt{c+a^2 c x^2}}+\frac{1}{2} (a c) \operatorname{Subst}\left (\int \frac{1}{x \sqrt{c+a^2 c x}} \, dx,x,x^2\right )\\ &=-\frac{\sqrt{c+a^2 c x^2} \tan ^{-1}(a x)}{x}-\frac{2 i a c \sqrt{1+a^2 x^2} \tan ^{-1}(a x) \tan ^{-1}\left (\frac{\sqrt{1+i a x}}{\sqrt{1-i a x}}\right )}{\sqrt{c+a^2 c x^2}}+\frac{i a c \sqrt{1+a^2 x^2} \text{Li}_2\left (-\frac{i \sqrt{1+i a x}}{\sqrt{1-i a x}}\right )}{\sqrt{c+a^2 c x^2}}-\frac{i a c \sqrt{1+a^2 x^2} \text{Li}_2\left (\frac{i \sqrt{1+i a x}}{\sqrt{1-i a x}}\right )}{\sqrt{c+a^2 c x^2}}+\frac{\operatorname{Subst}\left (\int \frac{1}{-\frac{1}{a^2}+\frac{x^2}{a^2 c}} \, dx,x,\sqrt{c+a^2 c x^2}\right )}{a}\\ &=-\frac{\sqrt{c+a^2 c x^2} \tan ^{-1}(a x)}{x}-\frac{2 i a c \sqrt{1+a^2 x^2} \tan ^{-1}(a x) \tan ^{-1}\left (\frac{\sqrt{1+i a x}}{\sqrt{1-i a x}}\right )}{\sqrt{c+a^2 c x^2}}-a \sqrt{c} \tanh ^{-1}\left (\frac{\sqrt{c+a^2 c x^2}}{\sqrt{c}}\right )+\frac{i a c \sqrt{1+a^2 x^2} \text{Li}_2\left (-\frac{i \sqrt{1+i a x}}{\sqrt{1-i a x}}\right )}{\sqrt{c+a^2 c x^2}}-\frac{i a c \sqrt{1+a^2 x^2} \text{Li}_2\left (\frac{i \sqrt{1+i a x}}{\sqrt{1-i a x}}\right )}{\sqrt{c+a^2 c x^2}}\\ \end{align*}

Mathematica [A]  time = 0.445629, size = 163, normalized size = 0.67 \[ -\frac{a \sqrt{c \left (a^2 x^2+1\right )} \left (-i \text{PolyLog}\left (2,-i e^{i \tan ^{-1}(a x)}\right )+i \text{PolyLog}\left (2,i e^{i \tan ^{-1}(a x)}\right )+\frac{\sqrt{a^2 x^2+1} \tan ^{-1}(a x)}{a x}+\tan ^{-1}(a x) \left (-\log \left (1-i e^{i \tan ^{-1}(a x)}\right )\right )+\tan ^{-1}(a x) \log \left (1+i e^{i \tan ^{-1}(a x)}\right )-\log \left (\sin \left (\frac{1}{2} \tan ^{-1}(a x)\right )\right )+\log \left (\cos \left (\frac{1}{2} \tan ^{-1}(a x)\right )\right )\right )}{\sqrt{a^2 x^2+1}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(Sqrt[c + a^2*c*x^2]*ArcTan[a*x])/x^2,x]

[Out]

-((a*Sqrt[c*(1 + a^2*x^2)]*((Sqrt[1 + a^2*x^2]*ArcTan[a*x])/(a*x) - ArcTan[a*x]*Log[1 - I*E^(I*ArcTan[a*x])] +
 ArcTan[a*x]*Log[1 + I*E^(I*ArcTan[a*x])] + Log[Cos[ArcTan[a*x]/2]] - Log[Sin[ArcTan[a*x]/2]] - I*PolyLog[2, (
-I)*E^(I*ArcTan[a*x])] + I*PolyLog[2, I*E^(I*ArcTan[a*x])]))/Sqrt[1 + a^2*x^2])

________________________________________________________________________________________

Maple [A]  time = 0.426, size = 221, normalized size = 0.9 \begin{align*} -{\frac{\arctan \left ( ax \right ) }{x}\sqrt{c \left ( ax-i \right ) \left ( ax+i \right ) }}+{ia\sqrt{c \left ( ax-i \right ) \left ( ax+i \right ) } \left ( i\arctan \left ( ax \right ) \ln \left ( 1+{i \left ( 1+iax \right ){\frac{1}{\sqrt{{a}^{2}{x}^{2}+1}}}} \right ) -i\arctan \left ( ax \right ) \ln \left ( 1-{i \left ( 1+iax \right ){\frac{1}{\sqrt{{a}^{2}{x}^{2}+1}}}} \right ) +i\ln \left ( 1+{(1+iax){\frac{1}{\sqrt{{a}^{2}{x}^{2}+1}}}} \right ) -i\ln \left ({(1+iax){\frac{1}{\sqrt{{a}^{2}{x}^{2}+1}}}}-1 \right ) -{\it dilog} \left ( 1-{i \left ( 1+iax \right ){\frac{1}{\sqrt{{a}^{2}{x}^{2}+1}}}} \right ) +{\it dilog} \left ( 1+{i \left ( 1+iax \right ){\frac{1}{\sqrt{{a}^{2}{x}^{2}+1}}}} \right ) \right ){\frac{1}{\sqrt{{a}^{2}{x}^{2}+1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(arctan(a*x)*(a^2*c*x^2+c)^(1/2)/x^2,x)

[Out]

-(c*(a*x-I)*(a*x+I))^(1/2)*arctan(a*x)/x+I*a*(c*(a*x-I)*(a*x+I))^(1/2)*(I*arctan(a*x)*ln(1+I*(1+I*a*x)/(a^2*x^
2+1)^(1/2))-I*arctan(a*x)*ln(1-I*(1+I*a*x)/(a^2*x^2+1)^(1/2))+I*ln(1+(1+I*a*x)/(a^2*x^2+1)^(1/2))-I*ln((1+I*a*
x)/(a^2*x^2+1)^(1/2)-1)-dilog(1-I*(1+I*a*x)/(a^2*x^2+1)^(1/2))+dilog(1+I*(1+I*a*x)/(a^2*x^2+1)^(1/2)))/(a^2*x^
2+1)^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctan(a*x)*(a^2*c*x^2+c)^(1/2)/x^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{a^{2} c x^{2} + c} \arctan \left (a x\right )}{x^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctan(a*x)*(a^2*c*x^2+c)^(1/2)/x^2,x, algorithm="fricas")

[Out]

integral(sqrt(a^2*c*x^2 + c)*arctan(a*x)/x^2, x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{c \left (a^{2} x^{2} + 1\right )} \operatorname{atan}{\left (a x \right )}}{x^{2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(atan(a*x)*(a**2*c*x**2+c)**(1/2)/x**2,x)

[Out]

Integral(sqrt(c*(a**2*x**2 + 1))*atan(a*x)/x**2, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{a^{2} c x^{2} + c} \arctan \left (a x\right )}{x^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctan(a*x)*(a^2*c*x^2+c)^(1/2)/x^2,x, algorithm="giac")

[Out]

integrate(sqrt(a^2*c*x^2 + c)*arctan(a*x)/x^2, x)